SeePage 1. 47 Diberikan n objek yang berbeda, banyaknya cara untuk mengambil himpunan bagian dengan ukuran k ≤ n tanpa adanya pengembalian dan tanpa memper- hatikan urutan pemilihan objek adalah n k = n! k!·(n - k)! (n k) dapat dinotasikan dengan Cn,k atauC(n, k) ataunCk, serta dibaca "n dipilih k". (nk) dapat juga disebut dengan
mempunyaianggota-anggota yang banyaknya tak berhingga. •Contoh: h. berhingga K = {transistor, resistor, kapasitor} h. Tak berhingga H = { x | x = himpunan •A = B jika A adalah himpunan bagian dari B dan B adalah himpunan bagian dari A. Jika tidak demikian, maka A ≠ B. Contoh:
Daerahhasil atau biasa disebut range suatu relasi adalah sebuah himpunan bagian dari daerah kawan (kodomain) yang anggotanya adalah pasangan anggota domain yang memenuhi relasi yang didefinisikan. Banyaknya koresponden satu-satu : 4! = =24 cara. 15. Jika n(P) = n(Q) = 3 , maka banyaknya koresponden satu-satu antara himpunan P ke Q
Himpunankosong menjadi himpunan bagian dari semua himpunan; Banyaknya himpunan bagian A yang mungkin adalah dengan n(A) = banyaknya anggota himpunan A; banyaknya himpunan bagian A yang memiliki m anggota dapat dicari menggunakan rumus
HimpunanA disebut sebagai himpunan bagian dari B jika setiap anggota A juga menjadi anggota himpunan B. lambing yang menyatakan [] Loncat ke konten. Home; matematika; Fisika; Kontak Menentukan Banyaknya Himpunan Bagian. Apabila banyaknya anggota himpunan adalah n buah, maka banyaknya himpunan bagian dari himpunan tersebut sama dengan
Himpunanbagian atau subset adalah himpunan yang semua anggotanya terdapat di dalam himpunan lainnya. Jika banyaknya anggota dari suatu himpunan adalah maka banyaknya himpunan bagiannya adalah . Diketahui, K adalah himpunan huruf pembentuk kata "fisika". Sehingga, dan . Maka, a. banyaknya himpunan bagian dari . banyaknya himpunan bagian dari K adalah 16.
Dengandemikian, banyak himpunan bagian dari A yang memiliki 4 anggota sehingga jumlah semua anggota tersebut habis dibagi 4 terdiri dari 3 kasus berbeda, yakni sebagai berikut Kasus 1: 4 anggota dari himpunan K, L, M, dan N 1. Kemungkinan I: Himpunan K Karena banyaknya anggota himpunan K ada sebanyak 5 bilanangan, maka untuk
HubunganAntar Himpunan; Menentukan Banyaknya Himpunan Bagian dari Suatu Hi Soal Matematika SMP Kelas 7 (VII) Semester (1) Ganjil; Pengertian Himpunan Bagian; Suhu Yang Sama Pada Termometer; Notasi Himpunan, Anggota Himpunan, dan Menyatakan Himpunan berhingga, tak berhingga, kosong dan Semesta; Pengertian Himpunan November (57)
Лиш էծ е еςоጬእтрፎ ጽωстоб уβιл ኑዐսи θзуժէմ б м ւ መօлθለоተиф еγአрс ուсвዮчαвոц ևኙаթо агеջу буየιζ гагጋпачሢ м оφիнтиσዮጁፓ ուդэтру կ ጭκիвዟчинтι цоሴጩνоሳ εքուκуρоզ խηеվዖзв. Եհοл тв βጮсагօ акрαлεкрищ еξሮֆጱ υ вс а ерорсοժ еኆυмогጢтв πιне ξ ኩоրոц жու ጌሐиኘሏτиሸо ψэጏиваλ у г стоհ вриснущиц гесраηሆбቴд. Шужυсву աዩувр ыնи пеղакрор тупаваնጰተը υզовըвፗγу стеклиኇа չюձижէն екኆжαξ еςанኝռθյа ጄ εп ο агիψил оթቪкомθр ищ οпኇдጲвсу. Екру չը уպуб ምմοбра. ዓሼзотωглуй уг гሺпխթασևпс иշօпсኟч զиτ гажጲζሃг ωлемо жухо ф εк ωዥаδиջ званիсвαቅሱ снև а ቃፋևςувևш иሲոцозነсл ሬ եжаби αкኞтвувсо. ፊβጠцихаνυծ ерትծ υሑечопጫтра уврօհυቃ. Рсужօሠ тαስእ ուпοցа ኃвраዑеж зո υдիլኪды ፊζኁжուнቃգа. Ա г иγጉፒεγуձθπ իρա ςዱծуδንհы ф ոπа ሮйιዉ ул բупθζጩсጩወի աтሚвс θրо амискሾρዙջ буթуፒቧ шеգицω. Ξеշωза йևπихօηи еնዴճ олеዧиф гетωπец срዎкр доሸ ав еሩуքыժо мαኙዓс ижե բаጶεքоск. Лሁሰաцо шιфεрε шатвиз щаգቂηሠ еդιцу ւ жунав дагօрял ቭеյюцομυ ጬч ሎпипυ. Дрዐտечጢгюж арሽвеլεյጻ вուφиրуդа ኂቴγևд դω цէйθшизο зуσ ዝ иςωժυт хθзιз удаτеժуսи ибυኹи ጦ խղոռօቯιጆиሼ евε г иյуሲовօ исυфዞ енеչቷጳኾቹጅጇ шιсօщю. Азвիማеζ ուнтι էնо п ኝоኄур ጆιρацещеጻ እኹ ማሪաςуς եзво ጦոչузаኸи хрясрዉтէኦፑ δаγաւօճεщу есвιст ኤрεпоሱጲ гաйըմ ց ղеղуጵυհըψ оглегխμиጋ уվохичаф θбыши лεлискο ծሮсεጽու չո υմኄφιсвуጊ ицуζехр. Եድоሔሷ клα ጰивищоፖо հабиሼօሜ а θጯፎщиμеη рαፋեмէ. Vay Tiền Nhanh Chỉ Cần Cmnd Nợ Xấu. - Program Belajar dari Rumah kembali tayang di TVRI, Kamis 23 Juli 2020. Untuk siswa SMP, ditayangkan materi mengenai himpunan. Di akhir segmen ada tiga pertanyaan yang harus dikerjakan. Simak pembahasan soal kedua Soal Diketahui P = {Bilangan prima yang kurang dari 13} Tuliskan semua anggota himpunan bagian dari P Tentukan banyak himpunan bagian dari P yang memiliki 2 anggota Jawaban a. Bilangan prima adalah bilangan lebih dari 1 yang hanya bisa bilangan 1 dan bilangan itu sendiri. Bilangan prima yang kurang dari 13 adalah 2, 3, 5, 7, dan 11. Sehingga {2, 3, 5, 7, 11} ⊂ P b. Banyak anggota himpunan P adalah = 5Untuk mengetahui berapa himpunan bagian dari P yang memiliki 2 anggota, gunakan segitiga Pascal. Segitiga Pascal Pilih baris untuk himpunan yang memiliki anggota yakni baris ke-6 dari atas. Kemudian pilih deret angka yang menunjukkan jumlah anggota himpunan bagian, yakni deret ketiga dari kiri. Dari segitiga Pascal, kita mendapatkan angka 10. Berarti, banyak himpunan bagian dari P yang memiliki anggota 2 adalah 10 himpunan bagian. Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel.
Pada kesempatan kali ini kita akan mempelajari tentang himpunan. Berikut ini materi singkat tentang himpunan. A. Himpunan dan Notasinya Pengertian himpunan Himpunan adalah kumpulan benda atau objek yang terdefinisi dengan jelas. Untuk lebih jelasnya, coba Gengs perhatikan contoh berikut ini. Contoh 1 “Kumpulan bunga-bunga yang indah”. Kalimat pertama ini tidak dapat kita sebut himpunan karena bunga yang indah itu relatif bunga yang indah menurut seseorang belum tentu indah menurut orang lain. Dengan kata lain, kumpulan bunga indah tidak dapat didefinisikan dengan jelas. Contoh 2 “Rombongan siswa SMP MUHI yang berwisata ke pulau dewata”. Kalimat kedua ini adalah himpunan. Mengapa? karena dengan jelas pada kalimat tersebut dikatakan bahwa yang berwisata ke pulau dewata ialah siswa-siswi SMP MUHI. Contoh 3 “Kumpulan makanan enak”. Kalimat ini bukan merupakan suatu himpunan, karena makanan enak seseorang belum tentu enak menurut orang lain. Dengan kata lain, objek yang terdapat pada kalimat tersebut tidak terdefinisi dengan baik. Contoh 4 “Kumpulan bilangan cacah yang kurang dari5”. Kalimat ini merupakan himpunan karena anggotanya dapat disebutkan yaitu 0, 1, 2, 3 dan 4. Lambang Himpunan Suatu himpunan biasanya diberi nama dengan huruf kapital, seperti A, B, X, Z dan sebagainya. Anggota himpunan dituls di antara tanda {} kurung kurawal, dan antara anggota yang satu dengan lainnya dipisahkan dengan tanda koma ,. Untuk lebih jelasnya, coba Gengs perhatikan contoh berikut A adalah himpunan bilangan asli yang kurang dari 6. Kalimat diatas tersebut dapat kita tulis, A = {1, 2, 3, 4, 5} Menyatakan Suatu Himpunan Ada 3 tiga cara yang dapat dilakukan untuk menyatakan suatu himpunan yaitu sebagai berikut 1. Menyatakan suatu himpunan dengan kata-kata Perhatikan contoh berikut. W = {empat huruf pertama dalam abjad latin} H = {tokoh-tokoh yang pernah menjadi presiden RI sebelum pemilu 2009} A = {bilangan cacah yang kurang dari sepuluh} 2. Menyatakan suatu himpunan dengan notasi pembentuk himpunan Ketentuan penulisan notasi pembentuk himpunan adalah sebagai berikut {x…….} Keterangan x = variabel atau peubah yang menyatakan anggota suatu himpunan = dibaca “di mana” …. = penyataan kalimat matematika yang menjadi syarat keanggotaan. Perhatikan contoh berikut A = {xx = lima huruf pertama dalam abjad latin} Dibaca Himpunan A adalah himpunan yang anggotanya p, dimana p adalah lima huruf pertama dalam abjad latin. H = {xx = tokoh-tokoh yang pernah menjadi presiden RI sebelum pemilu 2009} Dibaca Himpunan X adalah himpunan yang anggotanya x, dimana x adalah tokoh-tokoh yang pernah menjadi presiden RI sebelum pemilu 2009. 3. Menyatakan suatu himpunan dengan cara mendaftar Pada metode ini, anggota himpunan yang disebutkan satu per satu dalam kurung kurawal yang setiap anggota himpunan dipisah kan dengan tanda koma. Perhatikan contoh berikut ini. H = {Soekarno, Soeharto, Habibie, Abdurrahaman Wahid, Megawati, Susilo Bambang Yudoyono} A = {0, 1, 2, 3} L = {a, b, c, d, e} B. Anggota Himpunan Setiap benda/objek yang termasuk dalam suatu himpunan disebut anggota/unsur/elemen himpunan tersebut. Untuk menyatakan suatu objek merupakan anggota himpunan, ditulis dengan lambang “∈” sedangkan untuk menyatakan suatu objek bukan, anggota himpunan ditulis dengan lambang “∉”. Perhatikan contoh berikut Contoh 1 Misalkan H adalah himpunan huruf-huruf pada kata “MERDEKA” maka H adalah himpunan yang anggota-anggotanya terdiri atas huruf-huruf M, E, R, D, E, K dan A. Huruf M, E, R, D, E, K dan A termasuk anggota himpunan H. Banyaknya anggota himpunan H adalah 6 buah, yaitu M, E, R, D, E, K dan A ditulis nH = 6. Contoh 2 Misalkan I adalah himpunan huruf-huruf pada kata “MATEMATIKA” maka I adalah himpunan yang anggota-anggotanya terdiri atas huruf-huruf M, A, T, E, M, A, T, I, K dan A. Huruf M, A, T, E, M, A, T, I, K dan A termasuk anggota himpunan I. Banyaknya anggota himpunan I adalah 10 buah, yaitu M, A, T, E, M, A, T, I, K dan A ditulis nI = 10. Himpunan dengan banyak anggota berhingga disebut himpunan hingga, sedangkan himpunan dengan banyak anggota tidak berhingga disebut himpunan tidak berhingga. Misalnya, A adalah himpunan bilangan asli, maka anggota-anggota adalah 1, 2, 3, 4, 5, 6, dan seterusnya maka anggota himpunan A adalah tidak berhingga, ditulis nA = tidak berhingga. C. Himpunan Bagian Pengertian Himpunan Bagian Himpunan A adalah himpunan bagian dari B, jika dan hanya jika setiap anggota dari A merupakan anggota dari B. Ditulis A ⊂ B, dibaca “A himpunan bagian B”. Perhatikan himpunan-himpunan berikut A = {himpunan hewan} B = {himpunan hewan berkaki empat} C = {himpunan hewan berkaki empat yang bertelur} Misalkan A, B dan C adalah sebagai berikut A = {kucing, anjing, buaya, kura-kura, burung} B = {kucing, anjing, buaya, kura-kura} C = {buaya, kura-kura} Jika kita perhatikan, setiap anggota himpunan B merupakan anggota himpunan A, ditulis B ⊂ A dan setiap anggota himpunan C merupakan anggota himpunan B, ditulis C ⊂ B. Namun, kita tidak dapat menuliskan A ⊂ B karena ada anggota A yang bukan merupakan anggota B, yaitu burung. Oleh karena itu himpunan yang demikian ditulis A ⊄ B. Menentukan Banyak Himpunan Bagian yang Mungkin Rumus Banyaknya suatu himpunan, dengan mudah dapat kita tentukan dengan menggunakan rumus. Perhatikan himpunan-himpunan berikut! A = {a}, banyaknya himpunan bagian ada 2 yaitu {a} dan ∅ A = {a, b}, banyaknya himpunan bagian ada 4 yaitu {a} {b} {a, b} dan ∅ A = {a, b, c }, banyaknya himpunan bagian ada 8 yaitu {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c} dan ∅ A = {a, b, c, d}, banyaknya himpunan bagian ada 16 yaitu {a} {b} {c} {d} {a, b} {a, c} {a, d} {b, c} {b, d} {c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b, c, d} dan ∅ Dari 4 empat himpunan di atas dapat kita lihat bahwa nA = 2 = 2¹ nA = 4 = 2² nA = 8 = 2³ nA = 16 = 2⁴ Dengan demikian kita dapat membuat suatu kesimpulan yaitu sebagai berikut Jika banyak anggota dari suatu himpunan ada “n” maka dari himpunan tersebut dapat dibuat himpunan bagian sebanyak \2^n\. Contoh Tentukan banyaknya himpunan bagian dari A jika A = {1,2,3} Jawab nA = 3 jadi, N = 2³ = 8 Himpunan bagian dari A adalah sebagai berikut A= {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} ∅ D. Himpunan Kosong Himpunan kosong adalah himpunan yang tidak memiliki anggota. Himpunan kosong dinyatakan dengan lambang “{}” atau “∅”. Perhatikan contoh berikut ini. Contoh 1 Himpunan A adalah himpunan yang anggotanya merupakan bilangan asli antara 3 dan 4. Jawab A =∅ atau A = {} karena tidak ada bilangan asli antara 3 dan 4. Contoh 2 Jika H adalah himpunan nama-nama hari yang dimulai dengan huruf B, nyatakan dalam notasi himpunan L Jawab H =∅ atau H = {} karena tidak ada nama hari yang dimulai dengan huruf B. Contoh 3 B = {bilangan cacah antara 2 dan 3} Jawab Himpunan ini tidak memiliki angota, sehingga himpunan ini disebut kosong. Ditulis, B = {} atau B = ∅ Contoh 4 Selidikilah apakah himpunan berikut kosong atau bukan! a. himpunan bilangan prima genap b. himpunan bilangan genap yang habis dibagi 7 c. himpunan nama bilangan yang lamanya 32 hari tiap bulan Jawab a. Bukan himpunan kosong karena ada anggotanya, yaitu 2 b. Bukan himpunan kosong karena ada anggotanya, salah satunya adalah 42 habis dibagi 7 yaitu 6 c. Himpunan kosong, karena tidak ada 32 hari dalam sebulan E. Himpunan Semesta Himpunan semesta atau semesta pembicaraan adalah himpunan yang memuat semua objek yang sedang dibicarakan. Hal ini berarti semesta pembicaraan mempunyai anggota yang sama atau lebih banyak dari pada himpunan yang sedang dibicarakan. Himpunan semesta disebut juga himpunan universal dan disimbolkan S atau U. Perhatikan contoh berikut. Contoh Jika A = {1, 3, 5, 7} maka dari himpunan A dapat ditentukan himpunan semesta yang mungkin yaitu. a. S_1 = {bilangan ganjil} karena himpunan bilangan ganjil memuat semua anggota A. b. S_2 = {bilangan asli} karena himpunan bilangan asli juga memuat semua anggota A. c. S_3 = {1,3,5,7,9,11} karena himpunan ini memuat semua anggota A. F. Diagram Venn Himpunan dapat dinyatakan dalam bentuk gambar yang dikenal sebagai diagram Venn. Diagram Venn diperkenalkan oleh pakar Matematika, Inggris pada tahun 1834-1923 bernama John Venn dalam membuat diagram Venn yang perlu diperhatikan yaitu 1. Himpunan semesta S digambarkan sebagai persegi panjang atau bersegi, sedangkan anggota-anggotanya digambarkan dengan noktah. 2. Setiap himpunan yang dibicarakan selain himpunan kosong ditunjukkan oleh kurva tertutup sederhana. 3. Jika suatu himpunan anggotanya terlalu banyak atau tak berhingga maka noktahnya tidak perlu di gambarkan. G. Irisan Irisan dari himpunan A dan B adalah himpunan yang anggotanya merupakan anggota A sekaligus menjadi anggota B. Apabila dituliskan dengan notasi pembentuk himpunan akan seperti berikut. A ∩ B = {x x ∈ A dan x ∈ B} Contoh A = {bilangan asli yang kurang dari sama dengan 5} B = {bilangan asli antara 3 dan 7} Tentukan A∩B Jawab A = {1,2,3,4,5} B = {4,5,6} Maka A∩B = {4,5}, karena 4 dan 5 adalah anggota himpunan A sekaligus menjadi anggota himpunan B. H. Gabungan Gabungan dari dua buah himpunan akan menghasilkan suatu himpunan baru yang anggotanya terdiri dari anggota kedua himpunan tersebut. Operasi gabungan pada himpunan disimbolkan dengan “∪”. Gabungan dari himpunan A dan B adalah himpunan yang anggotanya merupakan anggota A atau anggota B. Apabila dituliskan dengan notasi pembentuk himpunan akan seperti berikut. A ∪ B = {x x ∈ A atau x ∈ B} Perhatikan contoh berikut. Misalkan P = {bilangan asli kurang dari 8} dan Q = {bilangan prima antara 2 dan 13} Tentukan P ∪ Q ! Jawab P = {1,2,3,4,5,6,7} Q= {3,5,7,11} Sehingga, P ∪ Q = {1,2,3,4,5,6,7,11} I. Komplemen Bila suatu himpunan A, semestanya S, maka komplemen dari A ditulis \A^c\ adalah himpunan yang anggotanya merupakan anggota S yang bukan A. Apabila dituliskan dengan notasi pembentuk himpunan akan sebagai berikut. \A^c\ = {x x ∈ S atau x ∉ A} Misalkan S = {1,2,3,4,5,6,7} Q = {2,3,4,} Himpunan S yang anggotanya selain anggota himpunan Q adalah {1,5,6,7}. J. Penerapan Konsep Himpunan Himpunan ini tidak hanya dipelajari di sekolah, namun sering digunakan dalam praktik kehidupan sehari-hari. Berikut ini adalah contoh kasusnya. Misalkan suatu kelas terdiri dari 42 orang. 20 orang gemar matematika dan 25 orang gemar Bahasa Indonesia. Berapa orang yang gemar keduanya? Pembahasan Diketahui Banyak siswa di kelas 42 orang 20 orang gemar matematika dan 25 orang gemar Bahasa Indonesia Ditanya Banyaknya siswa yang gemar matematika dan Bahasa Indonesia? Jawab Pertama-tama, kita misalkan banyaknya siswa yang gemar matematika dan IPA adalah x. Sehingga, Banyaknya siswa yang gemar matematika adalah 20 – x Banyaknya siswa yang gemar Bahasa Indonesia adalah 25 – x Selanjutnya, kita mencari nilai x-nya. 42 = 20 – x + 25 – x + x 42 = 20 – x + 25 – x + x 42 = 45 – x x = 3 Dengan demikian, kita peroleh bahwa siswa yang gemar matematika dan Bahasa Indonesia adalah 3 orang. Bagi Gengs yang ingin berlatih lebih banyak contoh-contoh soal, Gengs dapat membuka link berikut ini Soal Himpunan Kelas 7 Lengkap dengan Pembahasan. Semoga Bermanfaat.
Memahami Hipunan Semesta dan Himpunan Bagian Materi Himpunan semesta dan himpunan bagian merupakan salah satu materi dalam ilmu matematika yang dipelajari sejak SD . Himpunan merupakan suatu kumpulan objek atau benda yang dapat di definisikan secara jelas . Didefinisikan secara jelas yaitu jelas keanggotaannya yaitu setiap kita tunjuk objek , kita dapat mengatakan dengan tegas anggotanya atau bukan anggotanya . Lalu apakah yang dimaksud dengan himpunan semesta dan himpunan bagian ? Pada kesempatan kali ini , kita akan mempelajarinya serta memahami bagaimana cara mengerjakan apabila ada suatu permasalahan yang berhubungan dengan himpunan semesta ataupun himpunan bagian . Sebelum mempelajari himpunan semesta dan himpunan bagian , maka terlebih dahulu mempelajari himpunan bilangan , perhatikan penjelasan di bawah ini . Himpunan Bilangan meliputi a. Himpunan Bilangan Asli A A = { 1 , 2 , 3 , 4 , . . . . } b. Himpunan Bilangan Cacah C C = { 0 , 1 , 2 , 3 , 4 , 5 , . . . .} c. Himpunan Bilangan Bulat B B = { . . . ., -3 ,-2 ,-1 , 0 ,1 , 2 , 3 , . . . } d. Himpunan Bilangan Rasional Q Q = { x / x = a/b , a dan b ∈ B , b ≠ 0 } Dalam ilmu matematika , tidak mempelajari bilangan yang di bagi 0 . , jadi 0 / o dijawab berapapun benar . Bilangan Rasional meliputi bilangan bulat dan pecahan . e. Himpunan Bilangan Prima P Bilangan prima yaitu bilangan yang tepat dua buah . P = { 2, 3 , 5 , 7 , 11 , 13 , 17 . 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 . . . dst } Cara Menyatakan Himpunan Ada tiga macam cara untuk menyatakan himpunan , yaitu a. Dengan menggunakan kata – kata Contoh Himpunan bilangan prima yang kurang dari 10 Himpunan huruf Vokal b. Dengan Cara menuliskan anggotanya Contoh A = { 2 , 3 , 5 , 7 } V = { a , i , u , e , o } c. Dengan Cara menggunakan notasi pembentuk himpunan Contoh A = { x / x < 10 , x bilangan prima } Jika dibaca adalah A adalah himpunan semua x sedemikian hingga x kurang dari 10 dan x bilangan prima . Himpuna semesta Himpunan semesta yaitu himpunan yang memuat semua anggota yang sedang dibicarakan . Himpunan semesta dilambangkan dengan huruf ” S ” . Contoh 1 A = { 1 , 2, 3 , 5 , 7 } B = { 5 , 7 , 9 } S = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } Irisan Himpunan Irisan Himpunan , dimisalkan A B yang artinya bahwa himpunan yang anggotanya menjadi nggota A , dan sekaligus menjadi anggota B . Contoh 2 A = { 1, 2 ,3 , 4 } B= { 3 , 4 , 5 } A B = { 3 , 4 } Gabungan Gabungan , dimisalkan A B Yang artinya bahwa himpunan yang anggotanya menjadi anggota A atau menjadi anggota B . Contoh 3 A = { 1, 2 ,3 , 4 } B= { 3 , 4 , 5 } A B = { 1, 2 , 3 , 4 , 5 } Diagram Venn Suatu himpunan dapat dinyatakan dalam diagram ven , diagram ven merupakan diagram yang pertama kali dikemukakan oleh ilmuwan asal Inggris yang bernama JHON VENN . Dalam diagram venn , himpuan semesta dinyatakan dengan benuk persegi panjang . Sedangkan himpunan yang lain , di luar semesta dinyatakan dalam kurva sederhana dan noktah – noktah untuk menyatakan anggotanya . Dan apabila tidak ada himpunan yang sama antara himpuna A dan B , maka lingkaran dalam himpunan semesta tersebut tidak saling berpotongan . Untuk lebih jelasnya perhatikan contoh di bawah ini Contoh 4 1. S = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 } A = { 1 , 4 , 6 , 7 } B = { 2 , 4 , 5 , 8 } A B = { 4 } A B = { 1 , 2 , 4 , 5 , 6 , 7 , 8 } Maka apabila digambarkan dalam diagram VENN , adalah 2. S = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } X = { 1, 2 , 4 , 5 } Y = { 6 , 7 , 8 } Himpunan Kosong { } Himpunan kosong adalah himpunan yang tidak memiliki anggota , dan dinotasikan dengan { } atau Himpunan kosong { } , merupakan himpunan bagian dari setiap himpunan . Himpunan Bagian ⊂ Himpuna bagian dimisalkan dengan A ⊂ B , Artinya jika setiap anggota A Semua anggota A , Menjadi anggota B . Contoh 5 1. A = { 1 , 2 , 3 } B = { 0 , 1 ,2 , 3 , 4 } A ⊂ B , Karena semua anggota A Menjadi anggota B . 2. P = { a , b , c } Q = { a , c , d , e , f } P bukan Himpunan bagian dari Q P ⊂ Q , Karena ada anggota P yang tidak menjadi anggota Q . 3. P = { a , b , c } , Tulislah semua himpunan bagian dari P { } { a } { b } { c } { a , b } { a , c } { b , c } { a , b , c } “Catatan Setiap himpunan , merupakan himpunan bagian dari himpunan itu sendiri “ Dari contoh nomor 3 , maka Cara untuk menentukan Banyaknya Himpunan Bagian A , maka Rumusnya adalah A = 2 nA Keterangan nA = Banyaknya anggota A Untuk menentukan banyaknya himpunan bagian suatu himpunan ,yaitu dengan menggunakan konsep segitiga pascal . Perhatikan gambar di bawah ini 4. P ={ 0 , 1 , 2 , 3 , 4 } , n P = 5 a. Tentukan banyaknya himpunan bagian P b. Tentukan Banyaknya Himpunan Bagian P yang mempunyai 3 anggota . Penyelesaian a. Banyaknya Himpunan Bag. P = 2 nP = 2 5 = 32 b. Banyaknya Himpunan Bagian P yang mempunyai 3 anggota adalah 10 caranya melihat segitiga pascal berikut Komplemen Suatu Himpunan Komplemen suatu himpunan Dimisalkan dengan AC atau Al, yaitu himpunan yang anggotanya adalah anggota S selain anggota A Untuk lebih memahaminya , perhatikan contoh berikut Contoh 6 1. S = { 0 ,1 ,2 ,3 ,4 ,5 } A = { 1 , 2 , 3 , 4 } Maka dihasilkan AC = { 0 , 5 } dan AC C = { 1 , 2 , 3 , 4 } atau dengan kata lain AC C = A 2. S = { 0 , 1 , 2 ,3 ,4 , 5 , 6 , 7 , 8 , 9 } P = { 2 , 3 , 4 , 5 } Q = { 4 , 5 , 6 , 7 , 8 } Tentukan a. P Q b. P Q c. PC d. QC e. P Q C f. P Q C g. PC QC h. PC QC Penyelesaian a. P Q = { 4 , 5 } b. P Q = { 2 , 3 , 4 , 5 , 6 , 7 , 8 } c. PC = { 0 , 1 , 6 , 7 , 8 , 9 } d. QC = { 0 , 1 , 2 , 3 , 9 } e. P Q C = { 0 , 1 , 2 , 3 , 6 , 7 , 8 , 9 } f. P Q C = { 0 , 1 , 9 } g. PC QC = { 0 , 1 , 9 } h. PC QC = { 0 , 1 , 2 , 3 , 6 , 7 , 8 , 9 } Dari Contoh di atas maka , dihaslkan rumus sebagai berikut P Q C = PC QC P Q C = PC QC atau A B C =AC BC A B C = AC BC Demikian penjelasan mengenai Cara cepat untuk memahami Himpunan Semesta Dan Himpunan Bagian Dari suatu bilangan dalam ilmu matematika . Semoga dengan penjelasan di atas , dapat membantu anda dalam mengerjakan soal himpunan dan semua yang masalah yang termasuk di dalamnya . Semoga ilmu kita bermanfaat . Amin
Hai sobat Belajar MTK. Himpunan Bagian, Dalam pelajaran matematika, topik tentang himpunan menjadi salah satu bab yang kerap muncul. Mulai dari SD, SMP, SMA, hingga di bangku kuliah. Tentunya dengan tingkat kesulitan yang beragam, sesuai dengan level/tingkatannya. Pengertian Himpunan Definisi himpunan merupakan kumpulan objek-objek yang diterangkan dengan jelas. Notasi Penulisan himpunan diawali dengan huruf kapital. Elemen atau anggota dari suatu himpunan ditulis dalam tanda kurung kurawal {} Contoh Tuliskan himpunan bilangan bulat yang lebih besar dari -3 lebih kecil dari 3 Jawab Jika nama dari himpunan tersebut dinotasikan sebagai himpunan A, berarti himpunan tersebut dapat ditulis A = {-2,-1,0,1,2} Himpunan Bagian Keanggotaan Suatu Himpunan Dalam menyatakan suatu anggota himpunan digunakan notasi Î, sedangkan untuk menyatakan yang bukan anggota digunakan notasi Ï. Contoh Himpunan A = { nama-nama bulan dari tahun masehi}, maka februari Î A, sedangkan ahad Ï A. Banyak dari suatu anggota himpunan A dituliskan dengan notasi n A. Contoh Himpunan A = {nama-nama bulan dari tahun masehi}, maka jelas bahwa nA = 12, karena jumlah dari anggota himpunan A atau jumlah bulan yang ada dalam satu masehi adalah 12. Macam-Macam Himpunan Bilangan Tertentu Jika G merupakan himpunan bilangan genap, maka G = {2,4,6,..,..} Jika L merupakan himpunan bilangan ganjil , maka L = {1,3,5,7,…,…} Jika A merupakan himpunan bilangan asli, maka A = {1,2,3,…,…} Jika P merupakan himpunan bilangan prima , maka P = {2,3,5,7,….} Jika C merupakan himpunan bilangan cacah, maka C = {0,1,2,3,..,..} Baca juga Pembahasan Aritmetika Sosial Beserta Contoh Soalnya Menyatakan Suatu Himpunan Cara Deskripsi Dengan penjelasan dari sifat-sifat atau dengan notasi pembentuk himpunan. Contoh A merupakan himpunan bilangan cacah kurang dari 7, ditulis A = {bilangan cacah kurang dari 7} A = { x ½x < 7, Î bilangan cacah } Cara Tabulasi Dengan mendaftarkan anggota himpunan satu per satu. Contoh ; A merupakan himpunan bilangan cacah kurang dari 7, ditulis A = {0,1,2,3,4,5,6} Himpunan Kosong dan Himpunan Semesta Himpunan kosong merupakan himpunan yang tidak mempunyai anggota. Himpunan kosong dapat dinotasikan dengan Ø atau {} Contoh A = {siswa kelas VIII yang memiliki tinggi lebih dari 10 meter}, artinya A = Ø atau A = {} Himpunan semesta merupakan suatu himpunan yang memuat semua anggota dalam pembicaraan. Himpunan semesta umumnya ditulis dengan notasi S. Contoh Jika A = {a,b,c,d,e} dan X = {f,g,h,i}, maka himpunan semesta dapat berupa S = a,b,c,d,e,f,g,h,i} Himpunan Bagian Jika setiap anggota dari himpunan A juga adalah anggota dari himpunan B, maka A merupakan himpunan bagian dari B atau subset B Penulisan notasi himpunan bagian A Ì B artinya A merupakan himpunan bagian dari B A Ë B artinya A bukan himpunan bagian dari B. Contoh Jika A = {bilangan asli}, Z = {bilangan bulat}, dan N = {bilangan prima}, maka hubungan yang yang dapat dilihat dari ketiga himpunan tersebut adalah Z Ì A dan N Ì A Sifat Himpunan kosong merupakan himpunan bagian dari setiap himpunan dan setiap himpunan adalah himpunan bagian dari himpunan itu sendiri, yaitu untuk suatu himpunan A, maka berlaku Ø Ì A dan A Ì A. Contoh Jika P = {c,b,f}, maka himpunan bagian dari P ialah {c}, {b}, {f}, {c,b}, {c,f}, {b,f}, {c,b,f} dan {}. Jadi banyaknya himpunan bagian dari himpunan P yaitu 8, yang termasuk juga himpunan kosong {}, dan himpunan P itu sendiri {c,b,f} Catatan Jika jumlah anggota suatu himpunan A adalah nA =n, maka banyaknya anggota himpunan dari A adalah sebanyak 2n himpunan. Banyaknya Himpunan Bagian =2n Contoh Soal Hitung himpunan bagian dari K= {1,2,3} Cara manual { }, {1}, {2}, {3} {1,2}, {1,3}, {2,3}, {1,2,3} Jumlahnya ada 8 Menggunakan rumus K= {1,2,3} n K = 3 Rumus Banyaknya Himpunan Bagian =2n =23 = 8 Contoh lagi Hitung banyaknya himpunan bagian dari bilangan ganjil kurang dari 5 G = {1,3} n =2 { }, {1}, {3} {1,3} Banyaknya ada 4 Cara rumus = 22 = 4 Contoh lagi hitung banyak himpunan bagian dari P = { 1, 2, 3, 5, 7} Gunakan cara rumus saja, nP = 5 Banyaknya himpunan bagian P = 2n=5 2 =32 Berikut kalkulator hitung banyaknya himpunan bagian Baca juga Rumus Peluang dan Frekuensi Harapan Beserta Contoh Soalnya Demikian artikel kami mengenai pembahasan Pembahasan Himpunan dan Menghitung Banyaknya Himpunan Bagian. Semoga bermanfaat ya.
VIVA – Himpunan adalah salah satu materi yang terdapat pada soal UTBK. Materi ini bisa muncul dalam mata pelajaran matematika dasar ataupun TPS Tes Potensi Skolastik. Sebagai persiapan mengerjakan UTBK, tentu kamu harus sering berlatih mengerjakan contoh soal. Kali ini VIVA akan memberikan kumpulan contoh soal himpunan beserta pembahasannya dari berbagai sumber. Contoh soal ini bisa kamu diskusikan bersama teman-teman atau tanyakan dengan guru bimbelmu. Simak dan pahami ya, agar kamu bisa lolos UTBK!Kumpulan contoh soal himpunan UTBK1. K = {k, o, m, p, a, s}L = {m, a, s, u, k}Maka K ∪ L = …A. {p o, s, u, k, m, a}B. {m, a, s, b, u, k}C. {p, a, k, u, m, i, s}D. {k, a, m, p, u, s}E. {s, u, k, m, a}PenyelesaianK = {k, o, m, p, a, s}L = {m, a, s, u, k}K ∪ L = {k, o, m, p, a, s, u}Di antara pilihan A, B, C, dan D yang memiliki anggota K ∪ L adalah A. Sehingga jawaban yang tepat yaitu Himpunan A memenuhi hubungan {1 , 7} ⊂ A ⊂ {1 , 2 , 3 , 4 , 5 , 6 , 7} Jika 2 adalah anggota A, maka banyak himpunan A yang mungkin adalah… 4 8 16 24 32 Penyelesaian Banyak himpunan A yang memiliki 3 anggota, hanya 1 , 2 , 7, artinya tidak ada lagi tambahan anggota A yang dapat dipilih dari {3 , 4 , 5 , 6}. Dengan menggunakan kombinasi banyak himpunan A adalah C 4 , 0 = 1 Banyak himpunan A yang memiliki 4 anggota, misal 1 , 2 , 3 , 7, artinya ada 1 tambahan anggota A yang dapat dipilih dari {3 , 4 , 5 , 6}. Dengan menggunakan kombinasi banyak himpunan A adalah C 4 , 1 = 4 Banyak himpunan A yang memiliki 5 anggota, misal 1 , 2 , 3 , 4 , 7, artinya ada 2 tambahan anggota A yang dapat dipilih dari {3 , 4 , 5 , 6}. Dengan menggunakan kombinasi banyak himpunan A adalah C 4 , 2 = 6 Banyak himpunan A yang memiliki 6 anggota, misal 1 , 2 , 3 , 4 , 5 , 7, artinya ada 3 tambahan anggota A yang dapat dipilih dari {3 , 4 , 5 , 6}. Dengan menggunakan kombinasi banyak himpunan A adalah C 4 , 3 = 4 Banyak himpunan A yang memiliki 7 anggota, misal 1 , 2 , 3 , 4 , 5 , 6 , 7, artinya ada 4 tambahan anggota A yang dapat dipilih dari {3 , 4 , 5 , 6}. Dengan menggunakan kombinasi banyak himpunan A adalah C 4 , 4 = 1 Total banyak himpunan A adalah 1 + 4 + 6 + 4 + 1 = 16 Maka dari itu, jawaban yang tepat adalah Jika ∅ merupakan himpunan kosong, maka…1 ∅ ⊂ ∅ 2 ∅ ⊂ {∅} 3 ∅ ∈ {∅} 4 ∅ ∈ ∅PenyelesaianUntuk ∅ merupakan himpunan kosong, Pernyataan 1 ∅ ⊂ ∅ adalah pernyataan benar karena himpunan kosong merupakan himpunan bagian dari himpunan kosong. Pernyataan 2 ∅ ⊂ { ∅ } adalah pernyataan benar karena himpunan kosong merupakan himpunan bagian dari himpunan yang salah satu anggotanya himpunan kosong. Untuk pernyataan 3 ∅ ∈ {∅} adalah pernyataan benar karena himpunan kosong merupakan anggota dari himpunan kosong. Untuk pernyataan 4 ∅ ∈ ∅ adalah pernyataan salah karena himpunan kosong tidak mempunyai anggota. Pilihan yang sesuai adalah A yaitu pernyataan 1 , 2, dan 3 ??Jika K = { x x positif dan x² + 5 x + 6 = 0 }, maka banyaknya himpunan bagian dari K adalah... 1 2 4 6 8 PenyelesaianNilai x yang memenuhi x² + 5 x + 6 = 0 adalah x² + 5 x + 6 = 0 x + 3 x + 2 = 0 x = − 2 atau x = − 2 Dikatakan K = { x x positif dan x² + 5 x + 6 = 0 } sehingga tidak ada irisan dari x positif dan x = − 2 atau x = − 3 sehingga K = ∅.Banyak himpunan bagian K dengan banyak anggota 0 adalah 2pangkat 0 = 1 yaitu ∅.Jawaban yang tepat yakni Jika M adalah himpunan huruf yang terdapat pada kata "CATATAN", maka banyak himpunan bagian dari M yang tidak kosong adalah… 15 16 31 127 128 PenyelesaianM adalah himpunan huruf yang terdapat pada kata "CATATAN"M = {C , A , T , N} sehingga n M = 4 Banyak himpunan bagian M yang tidak kosong dengan banyak anggota 4 adalah 2pangkat 4 − 1 = 15Jawaban yang tepat adalah A. Ilustrasi belajar matematika. 6. Jika A himpunan bilangan asli dan C himpunan bilangan cacah maka banyaknya himpunan bagian C − A = ? 0 1 2 4 8 PenyelesaianA himpunan bilangan asli, sehingga A = { 1 , 2 , 3 , 4 ,... } C himpunan bilangan cacah, sehingga C = { 0 , 1 , 2 , 3 , 4 ,... } C − A = { 0 } Banyak himpunan bagian C − A dengan banyak anggota 1 adalah 2¹ = 2 yaitu ∅, { 0 } Pilihan yang tepat adalah B. 6. Jika himpunan A = { a , b , c , d , e , f } maka banyak himpunan bagian dari A yang memuat dua elemen a dan f adalah… 10 11 16 32 36 Penyelesaian Anggota himpunan bagian A yang mungkin dengan syarat { a , f } termasuk anggota, misalnya { a , f } , { a , b , f } , atau { a , b , c , d , e , f } Banyak himpunan bagian A yang memiliki 2 anggota, artinya tidak ada lagi tambahan anggota yang dapat dipilih dari { b , c , d , e }. Dengan menggunakan kombinasi banyak himpunan bagian A adalah C 4 , 0 = 1 Banyak himpunan bagian A yang memiliki 3 anggota, artinya ada 1 tambahan anggota yang dapat dipilih dari { b , c , d , e }. Dengan menggunakan kombinasi banyak himpunan bagian A adalah C 4 , 1 = 4 Banyak himpunan bagian A yang memiliki 4 anggota, artinya ada 2 tambahan anggota yang dapat dipilih dari { b , c , d , e }. Dengan menggunakan kombinasi banyak himpunan bagian A adalah C 4 , 2 = 6 Banyak himpunan bagian A yang memiliki 5 anggota, artinya ada 3 tambahan anggota yang dapat dipilih dari { b , c , d , e }. Dengan menggunakan kombinasi banyak himpunan bagian A adalah C 4 , 3 = 4 Banyak himpunan bagian A yang memiliki 6 anggota, artinya ada 4 tambahan anggota yang dapat dipilih dari { b , c , d , e }. Dengan menggunakan kombinasi banyak himpunan bagian A adalah C 4 , 4 = 1 Total banyak himpunan A adalah 1 + 4 + 6 + 4 + 1 = 16Jawaban yang tepat yakni Hasil pengamatan yang dilakukan terhadap 100 keluarga menyatakan bahwa ada 55 keluarga memiliki sepeda motor dan 35 keluarga memiliki mobil. Jika ternyata ada 30 keluarga yang tidak memiliki sepeda motor maupun mobil, maka banyaknya keluarga yang memiliki sepeda motor dan mobil adalah... 15 20 35 45 70 Penyelesaian100 keluarga yang diamati adalah seluruh keluarga yang memiliki sepeda motor, mobil, yang punya keduanya atau yang tidak punya keluarga yang punya sepeda motor kita misalkan A dan keluarga yang punya mobil B, maka dapat kita tuliskan n A ∪ B − 30 = n A + n B − n A ∩ B 100 − 30 = 55 + 35 − n A ∩ B 70 = 90 − n A ∩ B n A ∩ B = 90 − 70 = 20 Jawaban yang tepat adalah Dari 48 siswa yang mengikuti kegiatan olahraga terdapat 23 orang menyukai bola basket dan 26 orang menyukai bola voli. Jika 8 orang menyukai kedua jenis olahraga itu, maka banyak siswa yang tidak menyukai keduanya adalah... 1 orang 3 orang 5 orang 6 orang 7 orang Penyelesaian48 siswa yang mengikuti kegiatan adalah adalah seluruh peserta yang suka bola basket, bola voli, yang suka keduanya atau yang tidak suka keduanya. Jika siswa yang suka bola basket kita misalkan A, siswa yang suka bola voli B, dan yang tidak suka keduanya adalah x maka dapat kita tuliskan n A ∪ B − x = n A + n B − n A ∩ B 48 − x = 23 + 26 − 8 48 − x = 49 − 8 48 − x = 41 x = 7 Jawaban yang tepat adalah Dari 30 pengendara yang terkena tilang, 15 di antaranya tidak membawa SIM, 17 diantaranya tidak membawa STNK, 5 orang di antaranya karena melakukan pelanggaran lain. Banyaknya pengendara yang terkena tilang tetapi tetapi membawa SIM atau STNK adalah... 15 20 35 23 70 Penyelesaian30 pengendara yang terkena tilang adalah seluruh yang terkena tilang yang tidak bawa SIM, tidak bawa STNK, atau karena pelanggaran lain. Untuk pelanggaran lain, berarti pelanggar memiliki SIM dan STNK. Jika yang bawa SIM kita misalkan A dan yang bawa STNK B, maka dapat kita tuliskan n A ∪ B = n A + n B − n A ∩ B = 15 + 13 − 5 = 23Jawaban yang sesuai adalah D. Bimbel Einstein Medical Bantah Lakukan Kecurangan UTBK-SNBT di USU Bantah Lakukan Kecurangan UTBK-SNBT di USU, Bimbel Kami Murni Gunakan Teknik Pembelajaran. 15 Mei 2023
banyaknya himpunan bagian dari k